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Abstract

Within a scaling ansatz formalism plus Thomas-Fermi approximation, we

investigate the collective excitations of a harmonically trapped boson-fermion

mixture in the collisionless and hydrodynamic limit at low temperature. Both

the monopole and quadrupole modes are considered in the presence of spher-

ical as well as cylindrically symmetric traps. In the spherical traps, the fre-

quency of monopole mode coincides in the collisionless and hydrodynamic

regime, suggesting that it might be undamped in all collisional regimes. In

contrast, for the quadrupole mode, the frequency differs largely in these two

limits. In particular, we find that in the hydrodynamic regime the quadrupole

oscillations with equal bosonic and fermionic amplitudes generate an exact

eigenstate of the system, regardless of the boson-fermion interaction. This

resembles the Kohn mode for the dipole excitation. We discuss in some detail

the behavior of monopole and quadrupole modes as a function of boson-
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fermion coupling at different boson-boson interaction strength. Analytic so-

lutions valid at weak and medium fermion-boson coupling are also derived

and discussed.
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I. INTRODUCTION

Shortly after the achievement of Bose-Einstein condensation of dilute, magnetically

trapped alkali atoms [1,2], the investigation of collective excitations in these systems has

become a very active research field (see [3] for a recent theoretical review). The high accu-

racy of frequency measurements and the sensitivity of collective phenomena to interaction

effects makes them good candidates to unravel the dynamical correlation of the many-body

system. So far, experimental results have been obtained for low-lying collective modes of

a trapped condensate in a wide temperature regime, including breathing modes [4], sur-

face modes [5], and the scissors mode [6]. These experiments have in turn stimulated a

considerable amount of theoretical work.

Recently the quantum degenerate regime has also been reached in a magnetically trapped

Fermi gas [7], and in a mixture of Bose and Fermi particles [8,9]. The latter system is in

particular interesting since it serves as one typical example in which the intermingled par-

ticles obey different statistics. Up to date the static property [10,11,12,13], the phase dia-

gram and phase separation [14,15,16], stability conditions [17,18] and collective excitations

[19,20,21,22,23,24,25,26] of trapped boson-fermion mixtures have been theoretically investi-

gated. In a recent experiment, the collapse of a degenerated Fermi gas caused by the strong

attractive interaction with a Bose-Einstein condensate has been observed in an atomic mix-

ture of 40K−87Rb [27], and measurements of collective excitations might be available soon

also in such systems.

The purpose of the present paper is to study the collective excitations of magnetically

trapped boson-fermion binary mixtures in two different regimes: a collisionless regime where

the collision rate is small compared with the frequencies of particle motion in the trap and

a hydrodynamic (collisional) regime in which collisions are sufficiently strong to ensure local

thermodynamic equilibrium. From the experimental point of view the temperature T of all

the realized boson-fermion mixtures is around the Fermi temperature TF (more precisely,

T > 0.2TF [8]), and the systems are possibly in or close to the hydrodynamic regime, since
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the sympathetic cooling technique used in the experiments usually requires a large boson-

fermion interaction strength so that the frequent collisions between fermions and bosons

can foster the local thermal equilibrium and ensure efficient thermalization of the fermionic

component to reach the quantum degeneracy. Of course, as far as the strongly degenerate

regime (where T ≪ TF ) is concerned, the collisions are rare because of Fermi statistic, and

the systems will be finally in the collisionless regime.

Several theoretical analysis have already been presented for the collective excitations of a

spherically trapped boson-fermion mixture. The collisionless modes are considered by a sum-

rule approach [24] or in the random-phase approximation [25,26]. The collisional collective

oscillations are discussed by Minguzzi and Tosi [23], however, limited to the surface modes at

weak fermion-boson coupling. On the other hand, the homogeneous boson-fermion mixtures

have also been analytically studied [19,20,21,22]. The repulsion between the Bogoliubov

phonon mode and zero-sound mode [19] (or Anderson mode [20]), is predicted when the

degenerated Fermi gas is in the normal collisionless limit (or in the superfluid phase).

In this paper, we shall analyze systematically the collisionless and hydrodynamic

monopole and quadrupole modes in the presence of spherical as well as cylindrically sym-

metric traps [28]. We discuss in some detail the behavior of those modes against boson-

fermion coupling at different boson-boson interaction strength. In the spherical traps, we

find that the monopole frequency coincides in the collisionless regime and in the hydrody-

namic one, suggesting that it might be undamped in all collisional regimes. In contrast, for

the quadrupole mode the frequency differs dramatically in these two limits. In particular,

in the hydrodynamic regime the quadrupole oscillations with equal bosonic and fermionic

amplitudes are found to generate an exact eigenstate of the system, resembling the Kohn

mode for the dipole excitation. Analytic solutions valid at weak and medium fermion-boson

coupling are also deduced and discussed.

The content of the paper is as follows. In the next section we derive equations of the low-

energy collective excitation of a boson-fermion mixture in the Thomas-Fermi approximation

by means of a scaling ansatz. In Sec. III we first briefly describe the parameters and
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the numerical procedure employed in the present calculation. We then turn to detailed

discussion of the results obtained by analyzing the dependence of the mode frequencies on

the boson-fermion coupling and boson-boson interaction strength, the ground-state density

distributions, and the mixing between bosonic and fermionic collective oscillations. The last

section is devoted to summary and conclusions.

II. FORMULATION

We consider a dilute spin-polarized boson-fermion mixture trapped in a cylindrically

symmetric harmonic oscillator potential at low temperature. In the semi-classical Thomas-

Fermi approximation, the normal Fermi gas evolves according to the Boltzmann-Vlasov

kinetic equation [29,30] (see the Eq. (2) below). In the collisionless regime, the collisions

are rare and we can safely neglect the collision term (Icoll) that accounts for the damping of

collective modes. On the opposite of the hydrodynamic regime, the collision term dominates

and we resort to the Euler equation of motion [31], which can be deduced from Boltzmann-

Vlasov kinetic equation under the assumption of local equilibrium for fermions [32]. For the

bosonic part, we shall apply the same Stringari’s hydrodynamic formulation [33] in both

regimes, since the dynamics of the condensate is less affected by the collisions [34].

A. collisionless regime

According to the Stringari’s hydrodynamic description [33], the low-energy dynamics of

the trapped bosonic atoms is determined by the equations,

∂nb

∂t
+ ∇ (vbnb) = 0,

mb
∂vb

∂t
+ ∇

(

V b
ho + gbbnb + gbfnf +

1

2
mbv

2
b

)

= 0, (1)

where V b
ho (r) = 1

2
mb (ω2

⊥bρ
2 + ω2

zbz
2) is the cylindrical symmetric confining potential, and

nb (r, t), nf (r, t) and vb (r, t) are the boson, fermion density and velocity field, respectively.

The mean-field term gbfnf (r, t) is included to take into account the effect of boson-fermion
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interaction [10]. The boson-boson and boson-fermion interaction strength for the pseu-

dopotentials, gbb and gbf , are related to the s-wave scattering lengths abb and abf through

gbb = 4πh̄2abb/mb, gbf = 2πh̄2abf/mbf where mbf = mbmf/ (mb + mf ) is the reduced boson-

fermion mass. In Eq. (1), we have already neglected the quantum kinetic energy pressure

term h̄2

2mb
√

nb
∇2√nb in the spirit of the Thomas-Fermi approximation [3].

For the fermionic part in the collisionless regime, in order to take into account the

effects of the boson-fermion interactions, we consider the mean-field description based on

the Boltzmann-Vlasov kinetic equation [29,30] without the collisional term (Icoll),

∂f

∂t
+ vf ·

∂f

∂r
− 1

mf

∂V f
ho

∂r
· ∂f

∂vf
− gbf

mf

∂nb

∂r
· ∂f

∂vf
= 0, (2)

where f (r,vf , t) is the single particle phase space distribution function for fermions,

nf (r, t) =
∫

d3vff (r,vf , t) and V f
ho (r) = 1

2
mf

(

ω2
⊥fρ

2 + ω2
zfz

2
)

is the confining potential.

The last term in the left hand side of Eq. (2) is a Hartree-Fock mean-field term, also

known as the Vlasov contribution. The fermion-fermion interaction has been neglected as

the polarized system is considered [35].

Without the boson-fermion interaction (gbf = 0), both the Eqs. (1) and (2) admit the

simple scaling solution, i.e.,

nb (r, t) =
1

∏

j bj (t)
n0

b

(

ri

bi(t)

)

,

vbi (r, t) =
1

bi(t)

dbi(t)

dt
ri, (3)

for bosons [31,36] and

f (r,vf , t) = f0

(

ri

γi(t)
, ṽf(r, t)

)

,

ṽfi(r, t) = γi(t)vfi −
dγi(t)

dt
ri, (4)

for fermions [29,30,37]. Here n0
b and f0 are the equilibrium distributions. The dependence

on time t is entirely contained the six scaling parameters, bi (t) and γi(t), where i = x, y,and

z. By substituting this solution into Eqs. (1) and (2), it is easily to show that, the scaling

parameters obey the coupled differential equations [36,37],
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b̈i(t) + ω2
ib(t)bi(t) −

ω2
ib(0)

bi(t)
∏

j bj (t)
= 0, (5)

γ̈i(t) + ω2
if(t)γi(t) −

ω2
if(0)

γ3
i (t)

= 0. (6)

Solutions of Eqs. (5) and (6) determine the evolution of both the boson and fermion density.

In particular, the eigenfrequencies of small oscillations with ωi(t) = ωi(0) are the resonance

frequencies of the collective density (shape) oscillations under the weak perturbation of the

external field. After linearizing around the equilibrium values bi = 1 and γi = 1, one finds,

in the case of the spherical harmonic traps, the result: ωMb =
√

5ωb, ωQb =
√

2ωb and

ωMf = 2ωf , ωQf = 2ωf for the frequencies of the monopole and quadrupole oscillations,

respectively, which is already well known in the literatures.

In the presence of the boson-fermion interaction (gbf 6= 0), however, the simple scaling

solution is no longer satisfied at every position r after the substitution. A useful approx-

imation, in the first order of gbf , is to assume the scaling form of the solution as a priori,

and fulfill it on average by integrating over the spatial coordinates. The same strategy has

been recently used by Guery-Odelin [29] to investigate the effect of the interaction on the

collective oscillation of a classical gas in the collisionless regime and by Menotti et al. to

study the expansion of an interacting Fermi gas [30]. In the latter, the authors showed that

the frequencies of the monopole and quadrupole modes for isotropic traps deduced in this

approximation coincide with the result derived earlier by using the sum-rule approach. Of

course, the assumption of the scaling ansatz is only meaningful for the small value of |gbf |.

It will apparently break down for a large and positive gbf , at which the phase separation

occurs.

In the approximation specified above, we substitute the scaling ansatz Eq. (3) into

Stringari’s hydrodynamic equations. By setting Ri = ri/bi(t), one finds,

b̈i(t)Ri + ω2
ib(t)bi(t)Ri +

gbb

mb

1

bi(t)
∏

j bj (t)

∂n0
b (R)

∂Ri

+
gbf

mb

1

bi(t)
∏

j γj (t)

∂n0
f ( bi(t)

γi(t)
Ri)

∂Ri
= 0 , (7)
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which reduces to the following form in equilibrium state,

ω2
ib(t)Ri +

gbb

mb

∂n0
b (R)

∂Ri
+

gbf

mb

∂n0
f (R)

∂Ri
= 0. (8)

The equations for the scaling parameters bi(t) can be obtained by multiplying Eq. (7) by

Rin
0
b (Ri) on both sides and integrating over the spatial coordinates. Making use of the

equilibrium properties of the density distribution (8), after some straightforward algebra

one finds,

b̈i(t) + ω2
ib(t)bi(t) −

ω2
ib(0)

bi(t)
∏

j bj (t)

+
gbf

mbNb 〈R2
i 〉b

1

bi
∏

j bj

∫

d3R
∂n0

f (R)

∂Ri
Rin

0
b(

γi

bi
Ri)

− gbf

mbNb 〈R2
i 〉b

1

bi
∏

j bj

∫

d3R
∂n0

f (R)

∂Ri

Rin
0
b(R) = 0 , (9)

where 〈R2
i 〉b = 1

Nb

∫

d3Rn0
b(R)R2

i is the average size of bosons along the i-axis. The last two

terms in Eq. (9), linear in gbf , account for the effects of boson-fermion interaction.

Analogous procedure can also be applied for the fermionic part [38]. The equations for

the scaling parameters γi(t) are finally found to take the form,

γ̈i(t) + ω2
if(t)γi(t) −

ω2
if(0)

γ3
i (t)

+
gbf

mfNf 〈R2
i 〉f

1

γi
∏

j γj

∫

d3R
∂n0

b(R)

∂Ri
Rin

0
f (

bi

γi
Ri)

− gbf

mfNf 〈R2
i 〉f

1

γ3
i

∫

d3R
∂n0

b(R)

∂Ri
Rin

0
f (R) = 0 , (10)

where 〈R2
i 〉f = 1

Nf

∫

d3Rn0
f(R)R2

i .

The coupled set of differential equations (9) and (10) is a generalization of Eqs. (5) and

(6) in the presence of the boson-fermion coupling. It determines the dynamics of boson-

fermion mixtures in the collisionless regime as far as the assumption of the simple scaling

solution is valid. We shall only be interested in the small oscillation around the equilibrium

state (bi, γi ≈ 1) and apply it to study the behavior of monopole and quadrupole modes

against boson-fermion coupling. In this case, one can simplify the set of differential equations

by expanding
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n0
b(

γi

bi

Ri) ≈ n0
b(R) +

∑

j

∂n0
b(R)

∂Rj

(

γj

bj

− 1

)

Rj ,

n0
f (

bi

γi

Ri) ≈ n0
f (R) +

∑

j

∂n0
f (R)

∂Rj

(

bj

γj

− 1

)

Rj , (11)

to obtain

b̈i(t) + ω2
ib(t)bi(t) −

ω2
ib(0)

bi(t)
∏

j bj (t)

+
∑

k

ω2
ib(0)Bik

bi
∏

j bj

(

γk

bk

− 1
)

= 0 , (12)

and

γ̈i(t) + ω2
if(t)γi(t) −

ω2
if(0)

γ3
i (t)

+ ω2
if(0)Fi

(

1

γi
∏

j γj
− 1

γ3
i

)

+
∑

k

ω2
if (0)Dik

γi
∏

j γj

(

bk

γk
− 1

)

= 0 , (13)

where

Bik =
gbf

mbω
2
ib(0)Nb 〈R2

i 〉b

∫

d3R
∂n0

f (R)

∂Ri

RiRk
∂n0

b(R)

∂Rk

,

Fi =
gbf

mfω
2
if(0)Nf 〈R2

i 〉f

∫

d3R
∂n0

b(R)

∂Ri

Rin
0
f(R),

Dik =
gbf

mfω2
if(0)Nf 〈R2

i 〉f

∫

d3R
∂n0

b(R)

∂Ri
RiRk

∂n0
f (R)

∂Rk
,

are the dimensionless parameters proportional to gbf . In the case of a cylindrical trap, those

parameters can be reduced to Bαβ, Fα, and Dαβ (α, β = ρ or z) in terms of the cylindrical

coordinates, whose expressions are given in Appendix.

By linearizing Eqs. (12) and (13) around bi, γi = 1, for each component in ρ or z coordi-

nate one gets a separated equation and thus obtains four coupled equations. The dispersion

relation for the frequency of the monopole and quadrupole modes can be determined by the

condition for existence of nontrivial solutions, that is,

det
∥

∥

∥ω2 −Ac

∥

∥

∥ = 0, (14)

where the matrix
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Ac =

























(4 − Bρρ)ω
2
⊥b (1 − Bρz)ω

2
⊥b Bρρω

2
⊥b Bρzω

2
⊥b

(2 − Bzρ)ω
2
zb (3 − Bzz)ω

2
zb Bzρω

2
zb Bzzω

2
zb

Dρρω
2
⊥f Dρzω

2
⊥f (4 − Dρρ)ω

2
⊥f −(Fρ + Dρz)ω

2
⊥f

Dzρω
2
zf Dzzω

2
zf −(2Fz + Dzρ)ω

2
zf (4 + Fz − Dzz)ω

2
zf

























.

For each frequency of modes, the corresponding nontrivial solution, denoted by (Ab1,Ab2,Af1,Af2),

gives the amplitude of the small density oscillations. As the system is composed of two kinds

of particle, one would expect an emergence of two type of collective oscillations for each mul-

tipole. We thus define the mixing angle

θ = arcsin





√

√

√

√

A2
b1 + A2

b2

A2
b1 + A2

b2 + A2
f1 + A2

f2



 , (15)

to characterize the degree of mixing between bosonic and fermionic collective motions. As

a limiting case, θ = π/2 or 0 corresponds to the purely (decoupled) bosonic or fermionic

oscillations, respectively.

In the special case of spherical traps, the monopole and quadrupole modes are decoupled.

As shown in the Appendix, the dimensionless parameters Bαβ (Fα, Dαβ) can further be

reduced to a single value B (F, D),

B =
gbf

mbω
2
bNb 〈r2〉b

∫

4πr2dr
dn0

f(r)

dr
r2dn0

b(r)

dr
,

F =
gbf

mfω
2
fNf 〈r2〉f

∫

4πr2dr
dn0

b(r)

dr
rn0

f(r),

D =
gbf

mfω2
fNf 〈r2〉f

∫

4πr2dr
dn0

b(r)

dr
r2dn0

f(r)

dr
. (16)

Accordingly, the dispersion relation (14) for the frequency of modes takes the following

simple form,

ω2
M =

1

2

{[

(5 − B)ω2
b + (4 − F − D)ω2

f

]

±
(

[

(5 − B)ω2
b − (4 − F − D)ω2

f

]2
+ 4BDω2

bω
2
f

)1/2
}

, (17)

ω2
Q =

1

5

{[

(5 − B)ω2
b + (10 + 5F − D)ω2

f

]

±
(

[

(5 − B)ω2
b − (10 + 5F − D)ω2

f

]2
+ 4BDω2

bω
2
f

)1/2
}

, (18)
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where the suffix M , Q denote monopole and quadrupole modes, respectively.

B. hydrodynamic regime

In the hydrodynamic regime, one assumes that local equilibrium has been established

for the ground-state density profiles and it is maintained during dynamic fluctuations of the

particle densities. A useful description of the dynamics of the Fermi gas in this regime is

based on the Euler equation of motion [31,32],

∂nf

∂t
+ ∇ (vfnf) = 0,

mf
∂vfi

∂t
+

1

nf

∂P (r, t)

∂ri
+ mf

∑

j
vfj

∂vfi

∂rj
+

∂

∂ri

(

V f
ho + gbfnb

)

= 0, (19)

where the pressure P (r, t) = 2
5

h̄2(6π2)
2/3

2mf
n

5/3
f (r, t) in the local density approximation [32].

Without the boson-fermion interaction (gbf = 0), Eq. (19) still admits a simple scaling

solution [31,30], i.e.,

nf (r, t) =
1

∏

j γj (t)
n0

f

(

ri

γi(t)

)

,

vfi (r, t) =
1

γi(t)

dγi(t)

dt
ri, (20)

which leads the following equations for the scaling parameters γi(t):

γ̈i(t) + ω2
if (t)γi(t) −

ω2
if(0)

γi(t)
[

∏

j γj (t)
]2/3

= 0. (21)

In the presence of a nonzero gbf , one may still expect the validity of such scaling ansatz in

the weakly coupled limit, although there is no verification by the other method (Note that

the sum-rule approach is only applicable in the collisionless regime). Along the same line

as in the previous subsection, after substituting the scaling ansatz (20) into equation (19)

and taking the moment with respect to r2
i , one ultimately finds the differential equations

satisfied by γi(t),
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γ̈i(t) + ω2
if(t)γi(t) −

ω2
if (0)

γi(t)
[

∏

j γj (t)
]2/3

+
gbf

mfNf 〈R2
i 〉f

1

γi
∏

j γj

∫

d3R
∂n0

b(R)

∂Ri

Rin
0
f(

bi

γi

Ri)

− gbf

mfNf 〈R2
i 〉f

1

γi

[

∏

j γj

]2/3

∫

d3R
∂n0

b(R)

∂Ri
Rin

0
f(R) = 0 , (22)

which differ from Eqs. (10) for the collisionless regime.

Eqs. (9) and (22) can be linearized around the equilibrium state and combined to yield

the determinant,

det
∥

∥

∥ω2 −Ah

∥

∥

∥ = 0, (23)

Ah =

























(4 − Bρρ)ω
2
⊥b (1 − Bρz)ω

2
⊥b Bρρω

2
⊥b Bρzω

2
⊥b

(2 − Bzρ)ω
2
zb (3 − Bzz)ω

2
zb Bzρω

2
zb Bzzω

2
zb

Dρρω
2
⊥f Dρzω

2
⊥f (10

3
− 2Fρ

3
− Dρρ)ω

2
⊥f (2

3
− Fρ

3
− Dρz)ω

2
⊥f

Dzρω
2
zf Dzzω

2
zf (4

3
− 2Fz

3
− Dzρ)ω

2
zf (8

3
− Fz

3
− Dzz)ω

2
zf

























,

which gives rise to the dispersion relation in the hydrodynamic regime.

Finally, the frequency of the monopole and quadrupole modes for the spherical traps is

obtained by rewriting Bαβ (Fα, Dαβ) in terms of B (F, D),

ω2
M =

1

2

{[

(5 − B)ω2
b + (4 − F − D)ω2

f

]

±
(

[

(5 − B)ω2
b − (4 − F − D)ω2

f

]2
+ 4BDω2

bω
2
f

)1/2
}

, (24)

ω2
Q =

1

5

{[

(5 − B)ω2
b + (5 − D)ω2

f

]

±
(

[

(5 − B)ω2
b − (5 − D)ω2

f

]2
+ 4BDω2

bω
2
f

)1/2
}

. (25)

Eqs. (17) and (24) explicitly show that the frequency of monopole oscillations coincides in the

collisionless and hydrodynamic regime. This fact is a reminiscent of properties of a classical

gas confined in an isotropic traps (ωx = ωy = ωz = ω0) [39,40], in which the monopole

oscillation of frequency ω = 2ω0 is an exact undamped solution of the full Boltzmann

12



equation. Analogously, in the boson-fermion mixtures the monopole excitation might also

be undamped in all collisional regimes from the collisionless to the hydrodynamic one.

At the end of this section, we briefly mention the whole process of the numerical cal-

culations that consists of three stages. First, one has to find the equilibrium ground-state

densities at low temperature, which approximately satisfy the following coupled equations

in the Thomas-Fermi approximation [10],

V b
ho (ρ, z) + gbbn

0
b (ρ, z) + gbfn

0
f (ρ, z) = µb,

h̄2

2mf

(

6π2n0
f (ρ, z)

)2/3
+ V f

ho (ρ, z) + gbfn
0
b (ρ, z) = µf , (26)

where µb,f is the chemical potential. Then one computes the dimensionless parameters Bαβ,

Fα, and Dαβ (α, β = ρ or z), and finally, one solves the Eqs. (14) and (23) (in the case of

spherical traps, one explicitly uses Eqs. (17), (18) and (25)) to obtain the frequency of the

monopole and quadrupole modes. The mixing angle for each mode is also simultaneously

calculated.

III. RESULT

In this work, we have performed a numerical calculation for Nb = Nf = 106, where the

number of bosons and fermions is large enough to ensure the validity of the Thomas-Fermi

approximation, i.e., Nbabb/a
b
⊥ ≫ 1 and Nf ≫ 1 [10,14]. We take the harmonic oscillator

length ab
⊥ =

√

h̄
mbω⊥b

and h̄ω⊥b as units, and define the scaled dimensionless variables: the

coordinates ρ̃ = ρ/ab
⊥, z̃ = z/ab

⊥, boson/fermion densities ñ0
b,f = n0

b,f

(

ab
⊥

)3
, interactions

strength g̃bb = gbb/
[

h̄ω⊥b

(

ab
⊥

)3
]

= 4πabb/a
b
⊥, and chemical potentials µ̃b,f = µb,f/ (h̄ω⊥b).

We also introduce the quantities α = mf/mb, β = ω⊥f/ω⊥b, λ = ωzb/ω⊥b = ωzf/ω⊥f ,

and κ = gbf/gbb to parameterize the different mass of the two components, anisotropy of

traps, and boson-fermion coupling relative to the boson-boson interaction. The constraint

αβ2 = 1 is always satisfied since in experiments both bosons and fermions experience the

same trapping potential. In the scaled units, the coupled Thomas-Fermi equations (26) take

the form,
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1

2

(

ρ̃2 + λ2z̃2
)

+ g̃bbn
0
b + κg̃bbn

0
f = µ̃b,

1

2α

(

6π2n0
f

)2/3
+

1

2

(

ρ̃2 + λ2z̃2
)

+ κg̃bbn
0
b = µ̃f . (27)

It is convenient to obtain the solutions to Eq. (27) by iterative insertion of one density

distribution in the other equation and numerically searching for the chemical potential µ̃b

and µ̃f yielding the desired number of particles.

We shall investigate the behavior of monopole and quadrupole modes against boson-

fermion coupling κ for three typical values of g̃bb . First of all, we consider the relevant

parameters for a boson-fermion mixture composed of 40K (fermion) and 87Rb (boson), which

has been recent realized by the LENS group [9]. In order to emphasize the interplay of

collective modes of bosons and fermions due to the nonzero gbf (the degree of mixing will

be maximum if theirs bare mode frequencies are close to each other), we will consider the

same mass (mb = mf = m) and trapping frequency (ωb = ωf = ω0) for bosons and fermions

in most cases, although the realistic mass of 87Rb is about two times larger than that of

40K. As in the experiment, we take the radial harmonic frequency of ω⊥b = 2π × 216 s−1

for 87Rb and the boson-boson s-wave scattering length of abb = 110a0 = 5.9 nm, which

gives the rescaled interaction strength g̃bb = 0.1. In the ground state the fermions have a

much broader distribution than bosons because of the Pauli principle and the bosons are

completely immersed in the Fermi sea [9]. Secondly, as an opposite limit, we consider the

case in which the fermions and boson have approximately the same radius and significantly

overlap with each other. Within the Thomas-Fermi approximation, at κ = 0, the radius

of the Bose condensate and zero-temperature Fermi gas in the scaled units are given by

rb = (15Nbg̃bb/4π)1/5 and rf = (48Nf)
1/6, respectively. Equating these two numbers we get

the constraint: g̃bb = 2.11. Finally, we take g̃bb = 0.5 for the intermediate regime. It should

be note that in experiments the interaction strength g̃bb can be controlled by using Feshbach

resonances [41].

In the section IIIA, we briefly estimate the criterion for establishing the hydrodynamic

regime. In the next sections IIIB and IIIC, we analyze the collective modes in the collisionless

14



and hydrodynamic regime for a spherical trap. The results for a cylindrically symmetric trap

will be presented in section IIID.

A. the criterion to establish the hydrodynamic regime

A hydrodynamic regime is established in the low temperature alkali vapor when the

inequality

ωτ ≪ 1 (28)

holds, where τ being the collision time for incoherent scattering of fermions against the

condensate and ω being on the scale of the trap frequency (ω ≃ ωf ) for the low-lying modes.

At low temperature, the dominate collision procedure comes from the scattering between a

fermion and a condensate boson, which generates another fermion and a Bogoliubov quasi-

particle. In this procedure, the mean velocity of the condensate boson is negligible relative

to that of the fermions. A naive estimate for the collision time can thus be written as

τ−1 ≈ nb

(

4πa2
bf

)

vF

(

T

TF

)2

, (29)

where nb

(

4πa2
bf

)

vF is the classical collisional frequency and the factor
(

T
TF

)2
results from

the Pauli blocking. By setting nb = Nb/(4πr3
b/3) and taking vF =

√

2µF/mf for a spherical

trap, we approximately have

1

ωfτ
≈ 3 × 21/2 × 61/6 ×

(

4π

15g̃bb

)3/5

N
2/5
b N

1/6
f ã2

bf

(

T

TF

)2

, (30)

where ãbf = abf/aho is the s-wave boson-fermion scattering length in the scaled units.

For illustrative purposes we again consider the boson-fermion mixture of 40K and 87Rb

studied by the LENS group. From the known values of the 40K-87Rb scattering length

abf = 300a0, and g̃bb = 0.1, we have

1

ωfτ
≈ 29 ×

(

T

TF

)2

, (31)
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for Nb = Nf = 106. As anticipated earlier in the introduction, the temperature of order

T ∼ 0.5TF would suffice to verify the inequality (28) with ω ≃ ωf , and therefore to reach

the hydrodynamic regime.

In the next subsections, we shall consider the behavior of the collective modes against

the boson-fermion interaction strength, rather than the temperature. It should be reminded

that for a fixed temperature, our results for the hydrodynamic regime (or the collisionless

regime ) are only valid at |gbf | ≫ gc
bf (or |gbf | ≪ gc

bf), where gc
bf can be roughly determined

from Eq. (30).

B. collisionless modes in a spherical trap

Figures 1 and 2, respectively, show the frequencies and mixing angles of the monopole

and quadrupole modes as a function of κ for the case in which the bosons and fermions

have the same mass (mb = mf = m) and trapping frequency (ωb = ωf = ω0). As we

have anticipated in the last section, there are two types of collective oscillations for each

multipole. For clarity, we plot the lower and higher frequency modes by the solid and dashed

lines, respectively.

The collisionless collective modes for the weak boson-boson interaction has been inves-

tigated earlier by a sum-rule approach in Ref. [24]. As shown in the figures 1a and 2a, the

result for g̃bb = 0.1 agrees well with that obtained by the sum-rule approach in the whole

regime of κ if we use the same parameters (see, for example, the figures 2a and 2b in Ref.

[24]). This excellent agreement in some sense justifies our assumption of the scaling form of

solutions to Eqs. (1) and (2). We believe the same is true in the hydrodynamic regime.

The most remarkable feature in figures 1 and 2 is the existence of a specific value κc 6= 0

, at which the collective oscillation of each mode becomes purely bosonic or fermionic. κc

coincides with the critical values of phase separation for the strong boson-boson interaction

and becomes unity for the weak or medium boson-boson interaction. The existence of κc

can be readily understood from the distribution of boson and fermion densities. As shown
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by Mølmer [10], for a positive boson-fermion interaction, the fermions are squeezed out the

center. As κ increases, they will eventually form a shell-like distribution around the surface

of bosons for κ > 1 and will be completely pushed away from the center at a critical value

where the phase separation occurs. For the weak or medium boson-boson interaction, as

shown in the figure 3a, precisely at κ = 1 the fermions experience a constant potential in

the region occupied by bosons and therefore uniformly distributed there. As a result, the

parameters B and D defined in Eqs. (16) will vanish and consequently the bosonic and

fermion part in the determinant (14) will be completely decoupled. Therefore the collective

oscillation of modes will be purely bosonic or fermionic. Analogous mechanics works for the

case of strong boson-boson interaction, where B and D will be zero at the critical value of

phase separation that is smaller than unity. Note, however, that in this case our assumption

of the scaling ansatz will apparently break down once κ > κc, and the phase separation will

lead to a decoupling of the collective modes.

An immediate application of the above observation is that we can derive an analytic

expression for the frequency of each mode in the weak or moderately strong boson-boson

interaction in which κc = 1. As illustrated in figure 3b, for small values of κ, the B, F ,

and D can be well approximated by b0κ(1 − κ), f0κ, and d0κ(1 − κ), respectively, where

b0 = (dB/dκ)κ=0 , f0 = (dF/dκ)κ=0 , and d0 = (dD/dκ)κ=0. The form of B and D follows the

fact that they have to vanish at both κ = 0 and κ = 1. In the Thomas-Fermi approximation,

one may obtain,

b0 = +
224

π

(

Nf

Nb

)

x5

1
∫

0

y6
(

1 − x2y2
)1/2

dy,

f0 = −256

3π
x5

1
∫

0

y4
(

1 − x2y2
)3/2

dy,

d0 = +
256

π
x7

1
∫

0

y6
(

1 − x2y2
)1/2

dy, (32)

where x = rb

rf
=
(

mf ωf

mbωb

)1/2
(15Nbg̃bb/4π)1/5/(48Nf)

1/6 6 1 is the ratio of the radius of the

Bose condensate and zero-temperature Fermi gas. The frequencies obtained by combining
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Eqs. (17), (18) and (32) are plotted in figures 1 and 2 by thin lines. We find that it is in a

good agreement with the full numerical calculations for a wide regime of κ.

Below we discuss the behavior of the frequencies ωα of each mode by defining three

regions of κ: (I) κ < 0, (II) 0 6 κ < κc, and (III) κc 6 κ.

(a) Monopole. For a noninteracting boson-fermion system the low-lying monopole mode

is the fermionic oscillation with frequency ωL
M = 2ω0, while the higher mode is the bosonic

one with ωH
M =

√
5ω0 in the Thomas-Fermi approximation. Around κ = 0, one may obtain

ωL
M ≈ 2ω0

(

1 − d0+f0

8
κ
)

and ωH
M ≈

√
5ω0

(

1 − b0
10

κ
)

. The essential features of the monopole

mode as a function of κ can be summarized as follows. (i) The curve for the high-lying

bosonic mode seems like a parabola. Indeed, the frequency for the bosonic mode is always

found to be degenerate at κ = 0 and κ = κc. In region II, the frequency varies slowly

against κ and is slightly smaller than the value of
√

5ω0 in the noninteracting limit. Here, the

boson density distribution expands slightly compared with that of the noninteracting boson-

fermion system due to the weakly repulsive boson-fermion interaction and simultaneously

the bosons experience a weaker effective confinement. In the region I and III, the situation is

quite different: the bosons are heavily compressed by either the attractive or strong repulsive

boson-fermion interaction. This strong confinement leads to a steep rise of frequency with

increasing |κ|. (ii) The behavior of the frequency for low-lying fermionic mode against κ

is more complicated. As the boson-boson interaction strength g̃bb increases, the sign of the

derivative of the curve at κ = 0 changes from positive to negative. At g̃bb = 2.11 a large dip

appears in the region II. On the other hand, at a large negative values of κ, as pointed out

by Miyakawa et al. [24], we find a sharp decrease of the frequency towards the instability

point of the ground state. (iii) Finally, at large values of |κ| the mixing angle for both

the low-lying and high-lying modes becomes close to π/4, suggesting that the bosons and

fermions are highly correlated in the collective oscillations. The degree of mixing is enhanced

as one increases g̃bb.

(b) Quadrupole. For the quadrupole excitation (figure 2), the lower and higher energy

mode becomes bosonic and fermionic oscillation, respectively. To the first order of κ the
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frequencies of the lower and the higher quadrupole modes are given by ωL
Q ≈

√
2ω0

(

1 − b0
10

κ
)

and ωH
Q ≈ 2ω0

(

1 + 5f0−d0

20
κ
)

. For those modes, similar mechanisms as for the monopole mode

are still at work concerning the dependence on κ. However, the role of the boson-fermion

interaction is much reduced compared with the monopole case as seen by the factor 1/5 in

Eq. (18), which reflects that the quadrupole oscillation has 5 different components [24]. In

addition, the behavior of the high-lying fermionic mode is somewhat simpler. The frequency

is always decreases around κ = 0 as κ increases.

C. hydrodynamic modes in a spherical trap

In section II, we have analytically showed that in a spherical trap the frequency of

monopole oscillations coincides in the collisionless and hydrodynamic regime. Here we find

a dramatic difference for the quadrupole mode. In the figure 4, we plot the frequencies

and mixing angles of the quadrupole modes in the hydrodynamic regime against κ. The

parameters are the same as that in figures 1 and 2. Compared with the result for the

quadrupole mode in the collisionless regime (figure 2), an interesting feature emerges: The

frequency of the low-lying mode (high-lying mode) is always fixed to
√

2ω0 in the region

I and III (region II), independently of the value of κ, and the corresponding mixing angle

is exactly π/4 even around κ = 0. This strongly suggests that in this case the collective

oscillation with equal bosonic and fermionic amplitudes generates an exact eigenstate of the

system, regardless of the boson-fermion interaction. It resembles the Kohn mode in the

isotropic harmonic traps. Indeed, the behavior of the frequencies shown in figure 4 is quite

similar to that of a dipole mode in the collisionless limit (see, for example, the figure 2c in

Ref [24]). The above feature can also be explained explicitly from Eq. (25). For the case

considered here, ωb = ωf = ω0, we have ωQ =
√

2ω0 {1 − [(B + D) ± |B + D|] /10}1/2, and

thus one branch of ωQ will always be
√

2ω0.

The strong mixing of the bosonic and fermionic oscillation stated above in fact arises from

the “on resonance” condition, that is, the frequency of the bosonic and fermionic quadrupole
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modes in hydrodynamic regime is degenerate in the noninteracting limit of κ = 0. As shown

in figure 5, once one moves away from the “on resonance” condition by changing mf/mb,

the degree of mixing will be much reduced.

D. a cylindrically symmetric trap

In this subsection, we consider a cylindrical trap that is more relevant to the experiment.

Figures 6 and 7, respectively, display the frequencies of each mode for a cigar-shaped (λ =

0.5) and disk-shaped (λ = 2.0) trap in the collisionless (thick lines) and hydrodynamic

(thin lines) regime. As the monopole and quadrupole modes are coupled away from λ = 1,

we denote the two higher and two lower modes as quasi-monopole and quasi-quadrupole

ones, respectively. In the literature, the former one is also called as transverse breathing

mode in the limit of λ → 0. As one may expect, in the cylindrical trap the frequency of

quasi-monopole mode in the collisionless and hydrodynamic regime is no longer degenerate.

(a) a cigar-shaped trap. For the quasi-monopole excitation (figure 6a), the lower and

higher energy mode in both regimes are fermionic and bosonic oscillations. In region I and

III, the frequencies for the high-lying mode in the collisionless and hydrodynamic regime

are almost the same and they only differ sightly in region II. In contrast, for the low-lying

mode the frequencies in two regimes have significant differences. In particular, as κ decreases

towards the instability point of the ground state, the frequency in the collisionless regime

rises up steeply, while the one in the hydrodynamic regime shows a sharp decrease. For the

quasi-quadrupole excitation (figure 6b), on the other hand, the frequencies for each mode

bears a lot of similarity as that in the spherical case. We thus don’t discuss them further.

(b) a disk-shaped trap. In this case (figure 7), the lower and higher energy mode for both

quasi-monopole and quasi-quadrupole excitations in the collisionless regime are bosonic and

fermionic oscillations, respectively. The opposite is true in the hydrodynamic regime. Most

interestingly, the soften of the mode frequency towards the instability point of the ground

state now appears in the low-lying mode for the quasi-quadrupole excitations, rather than
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the monopole one.

IV. SUMMARY AND DISCUSSION

Ultracold boson-fermion mixtures of alkali atoms have recently been the subject of in-

tensive experimental research. As an important tool to characterize the behaviour of this

kind of many-body system, the investigation of collective oscillations will be of particular

interest. In this paper, with the help of Thomas-Fermi approximation and a scaling so-

lution we have studied the behavior of monopole and quadrupole excitations against the

boson-fermion interaction in two limiting cases: the collisionless and hydrodynamic regime.

For a spherical trap, the frequency of monopole mode is identical in both regimes, analo-

gous to that of a classical gas, which is undamped in all collisional regimes. In contrast,

the frequency of quadrupole mode differs largely in these two limits. Most interestingly, in

the case of same trapping frequency for the two components (ωb = ωf) and hydrodynamic

regime, the quadrupole oscillations with equal bosonic and fermionic amplitudes are found

to generate an exact eigenstate of the system, regardless of the boson-fermion interaction.

It indeed resembles the Kohn mode for the dipole excitation.

While we have restricted the discussion to the collisionless and hydrodynamic regime, it

should be explicitly remarked from the experimental point of view that it is more interest-

ing to investigate the crossover between these two limits [42], which might be realized in

the experiment by changing the temperature or controlling the particle-particle interaction

through Feshbach resonances. In theory, such crossover might be investigated by adding a

collision term (Icoll) to Eq. (2).

We are aware of that the above results are based on the assumption of the simple scaling

solution. Its validity has been partly justified by the good agreement between our results and

that obtained by a sum-rule approach. However, in case of large boson-fermion interaction,

the spectrum of lowest collective excitations might be fragmented [25,26,43]. As a result,

both the sum-rule approach and the approximation of simple scaling solution will break

21



down. In those regions, a refined treatment is deserved.
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VI. APPENDIX

This appendix is devoted to simplify the expressions of Bik, Fi, and Dik in case of

cylindrical symmetric or spherical traps. For a cylindrical trap, the boson and fermion

density distribution depend on ρ =
(

R2
x + R2

y

)1/2
, z = Rz only. By writing

∂

∂Rx

=
Rx

ρ

∂

∂ρ
= cos φ

∂

∂ρ
,

∂

∂Ry
=

Ry

ρ

∂

∂ρ
= sin φ

∂

∂ρ
,

∂

∂Rz
=

∂

∂z
, (A1)

one has

Bxx =
gbf

mbω2
⊥b(0)Nb 〈R2

x〉b

∫

d3R
∂n0

f (R)

∂Rx
RxRx

∂n0
b(R)

∂Rx
,

=

2π
∫

0
dφ cos4 φ

2π
∫

0
dφ cos2 φ

[

gbf

mbω2
⊥b(0)Nb 〈ρ2〉b

∫

ρdρdz
∂n0

f

∂ρ
ρ2∂n0

b

∂ρ

]

=
3

4
Bρρ,

where

Bρρ =
gbf

mbω2
⊥b(0)Nb 〈ρ2〉b

∫

ρdρdz
∂n0

f

∂ρ
ρ2 ∂n0

b

∂ρ
.
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Similarly, one finds the relations:

Bxx = 3Bρρ/4, Bxy = Bρρ/4, Bxz = Bρz,

Byx = Bρρ/4, Byy = 3Bρρ/4, Byz = Bρz,

Bzx = Bzρ/2, Bzy = Bzρ/2, Bzz = Bzz,

Fx = Fρ, Fy = Fρ, Fz = Fz,

Dxx = 3Dρρ/4, Dxy = Dρρ/4, Dxz = Dρz,

Dyx = Bρρ/4, Dyy = 3Bρρ/4, Dyz = Dρz,

Dzx = Dzρ/2, Dzy = Dzρ/2, Dzz = Dzz,

(A2)

where Bαβ, Fα, and Dαβ (α, β = ρ or z) take the form,

Bρρ =
gbf

mbω
2
⊥b(0)Nb 〈ρ2〉b

∫

ρdρdz
∂n0

f

∂ρ
ρ2 ∂n0

b

∂ρ
,

Bρz =
gbf

mbω2
⊥b(0)Nb 〈ρ2〉b

∫

ρdρdz
∂n0

f

∂ρ
ρz

∂n0
b

∂z
,

Bzρ =
gbf

mbω
2
zb(0)Nb 〈z2〉b

∫

ρdρdz
∂n0

f

∂z
zρ

∂n0
b

∂ρ
,

Bzz =
gbf

mbω2
zb(0)Nb 〈z2〉b

∫

ρdρdz
∂n0

f

∂z
z2 ∂n0

b

∂z
,

Fρ =
gbf

mfω
2
⊥f(0)Nf 〈ρ2〉f

∫

ρdρdz
∂n0

b

∂ρ
ρn0

f ,

Fz =
gbf

mfω
2
zf(0)Nf 〈z2〉f

∫

ρdρdz
∂n0

b

∂z
zn0

f ,

Dρρ =
gbf

mfω2
⊥f(0)Nf 〈ρ2〉f

∫

ρdρdz
∂n0

b

∂ρ
ρ2∂n0

f

∂ρ
,

Dρz =
gbf

mfω2
⊥f(0)Nf 〈ρ2〉f

∫

ρdρdz
∂n0

b

∂ρ
ρz

∂n0
f

∂z
,

Dzρ =
gbf

mfω2
zf(0)Nf 〈z2〉f

∫

ρdρdz
∂n0

b

∂z
zρ

∂n0
f

∂ρ
,

Dzz =
gbf

mfω
2
zf(0)Nf 〈z2〉f

∫

ρdρdz
∂n0

b

∂z
z2 ∂n0

f

∂z
. (A3)
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For a spherical trap, the density distribution is a function of r = (ρ2 + z2)
1/2

only. We thus

define ρ = r sin θ and z = r cos θ, where θ ∈ [0, π]. After some straightforward algebra one

finds,

Bρρ = 4
5
B, Bρz = 1

5
B, Bzρ = 2

5
B, Bzz = 3

5
B,

Fρ = F, Fz = F,

Dρρ = 4
5
D, Dρz = 1

5
D, Dzρ = 2

5
D, Dzz = 3

5
D,

(A4)

where B, F and D are given by Eqs. (16).
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Figures Captions

Fig. 1. The frequencies (upper part) and mixing angles (lower part) of the monopole

mode in the collisionless regime as a function of the boson-fermion interaction, for a spher-

ical trap with (a) g̃bb = 0.1, (b) 0.5 and (c) 2.11. The other parameters are Nb = Nf = 106,

mb = mf = m (or ωb = ωf = ω0). The low-lying and high-lying frequency mode are denoted

by the thick solid and dashed lines, respectively. The analytic solutions obtained by com-

bining Eqs. (17), (18) and (32) are also plotted in figures (a) and (b) by thin lines. Note

that in figure (c), the result is not meaningful at κ > κc ≈ 0.69, where the phase separation

will occur.

Fig. 2. The same as in fig. 1, but for the quadrupole mode.

Fig. 3. (a) The boson (solid line) and fermion (dashed line) density distribution for a

spherical trap with g̃bb = 0.5 and κ = 1. In this case, the fermions experience a constant

potential in the region occupied by bosons and therefore uniformly distributed there. (b)

b = B/κ, f = F/κ, and d = D/κ as a function the boson-fermion interaction for a spherical

trap with g̃bb = 0.5. Note that precisely at κ = 1, B = D = 0.

Fig. 4. The same as in fig.1, but for the quadrupole mode in the hydrodynamic regime.

Fig. 5. The frequencies (upper part) and mixing angles (lower part) of the quadrupole

mode in the hydrodynamic regime against the boson-fermion interaction, for a spherical trap

with (a) mf/mb = 0.8 and (b) mf/mb = 1.03 at g̃bb = 0.5. Since the boson and fermion

trapping frequency is not the same, the mode frequency for bosons and fermions is no longer

degenerate at κ = 0, i.e., it is out of the resonance. As a result, the degree of mixing between

bosonic and fermion collective oscillations is much reduced.
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Fig. 6. The frequencies of each mode as a function of κ for a cigar-shaped trap with

λ = 0.5. (a) quasi-monopole and (b) quasi-quadrupole. The results in the collisionless and

hydrodynamic regime, respectively, are displayed by the thick and thin lines. The other

parameters are Nb = Nf = 106, mb = mf = m and g̃bb = 0.5.

Fig. 7. The same as in fig. 6, but for a disk-shaped trap with λ = 2.0.
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